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METEOROLOGICAL ADJUSTMENT OF YEARLY MEAN VALUES FOR

AIR POLLUTANT CONCENTRATION COMPARISONS

by Steven M. Sidik and Harold E. Neustadter

Lewis Research Center

SUMMARY

This report presents an approach to interpretation of 24-hour averaged air pol-
lutant measurements taken in compliance with U.S Environmental Protection Agency
guidelines when analyzed in conjunction with such meteorological data as may be

readily obtained from the National Weather Service. The specific examples consid-
ered are Total Suspended Particulates (TSP) sulfur dioxide (SOn) and nitrogen
dioxide (NOg) in Cleveland, Ohio, for which some monitoringhas been performed by
the municipality since 1967, initially every sixth day and currently every third day.

We fit linear regression models to pollutant concentrations using the following
combinations of meteorologic variables as predictors: daily delta temperature (de-

fined as the maximum temperature minus the minimum) and its first difference; daily
minimum temperature and its first and second differences; daily average barometric

pressure; daily total precipitation (water equivalent in in.); and daily resultant

wind velocity.

We included two rough indicators of economic activity and allowed for the exist-

ence of both a linear "drift" in time and a seasonal component with a period of 1 year.
The goodness of fit of the estimated models to the data is partially reflected by the

squared coefficient of multiple correlation, indicating that at the various sampling
stations the models accounted for about 23 to 47 percent of the total variance of ob-
served TSP concentrations.

About a 20 percent improvement when using these equations in place of simple
mean observed values is obtained when (1) predicting mean concentrations for speci-
fied meteorological conditions or (2) comparing yearly averages after being adjusted
so as to remove meteorological effects.

We also present an application to source identification using regression coeffi-
cients of wind velocity predictor variables.



INTRODUCTION

Since the adoption of ambient air quality standards by the U .S Environmental

Protection Agency (USEPA) increasing numbers of communities have become in-

volved in the abatement and/or control of air pollution. The meaningful planning

and management of such activities requires that the people making decisions have

available information defining the levels and trends in ambient air quality. Such

questions as: "Is the air getting cleaner (dirtier)?" or "What might next year’s air

quality be?" must be answered. In general, the answers must be obtained from

existing data from ambient air quality monitoring programs Unfortunately, these

data do not directly relate to the aforementioned questions. Abatement and control

policies are concerned with pollutant emissions, whereas the observed ambient pol-

lutant levels are significantly affected by meteorological variability. Weather is a

dominant factor in determining pollution transport, dilution, washout, and so forth.

Thus, if ambient air quality data are to be applied beyond the question of how dirty

(clean) it was when the measurements were made, compensation must be made for

this meteorological variability.

This need for meteorological adjustment has long been recognized. Studies of

the relation between pollutant concentrations and weather have generally considered

smaller parts of the total problem. For example. Turner (ref. 1) examined the re-

lationship between two pollutants (SO, and TSP as indicated by a soiling index) and

three meteorological variables (mean wind speed, mean wind stability, and degree

days) by linear regression analysis. There have also been several studies of the

washout of certain pollutants by precipitation (Hales (ref. 2); Dana, Hales, and Wolf

(ref. 3)) Most studies of the effect of wind speed and direction have concentrated

on Gaussian plume diffusion models (ref. 4) Such models require a knowledge of

source strength, wind speed, mixing heights, and so forth. Yet other studies have

considered the analysis of multiple time series where one series consists of the pol-

lutant concentrations and the other series consist of meteorological variables (tem-

perature, wind speed, etc. (ref. 5)) Time series methods generally require (effec-

tively) continuous pollutant data and/or (effectively) continuous meteorological data.

This report is directed to the typical field agency working with limited resources

and following monitoring guidelines equivalent to those set by the USEPA (e.g.

24-hour averaged sampling once every 6 days) This led us to place restrictions

on the data set to be considered. Namely, the data had to be either that which a
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local agency would normally generate or which it could obtain with a minimum of
effort and cost. The main consequences of this restriction were that we used non-

continuous pollution data and have no measured mixing heights or inversion layers
in the meteorological data.

The following sections describe the application of linear regression modeling
to estimating pollutant concentrations using the following combinations of variables
as predictors: daily delta temperature (defined as the maximum temperature minus
the minimum temperature) and its first difference; daily minimum temperature and
its first and second differences; daily average barometric pressure; daily total pre-
cipitation (water equivalent in in.); and daily resultant wind velocity. The model
also includes two rough indicators of economic activity and allows for the existence
of both a linear "drift" in time and a seasonal component with a period of 1 year.

The remaining sections discuss the interpretation and application of the models
developed, as well as the goodness of fit and sources of error. As a result of our

study, it is clear that a significant enhancement of the value and relevance of the
air quality data currently being amassed can be obtained with no additional cost
other than a moderate effort at statistical analysis.

POLLUTANT CONCENTRATION DATA

The Cleveland Division of Air Pollution Control has taken 24-hour averaged air

quality samplings of TSP since January 1967, and of NOn and S0 since January 1968.

The present geographic deployment of the sampling sites is shown in figure 1. The

meandering heavy line in the center of the city is the Cuyahoga River, about which

is clustered most of the region’s heavy industry.

Of the 21 monitoring stations, 18 currently monitor all three pollutants while the

remaining three (stations 16, 18, 20) monitor TSP only. Seventeen of these stations

have been in operation since 1967 Stations 2, 4, 12, and 15 have undergone reloca-

tion since their initial installation. However, because of the proximity of their

present sites to their former sites, we have assumed that essentially the same en-

vironment has been measured throughout the period covered in this study. Cur-

rently the air is sampled every third day, although sampling frequency has varied

over the years and initially was once a week. Because some of these sites lack suf-

ficient data, we present results only for 19 sites for TSP and 13 sites for SOq and N0.z
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Summaries of the air pollution data used for this study, including tabulations

of means, standard deviations and goodness of fit to lognormality on an annual basis

have been reported earlier (ref. 6)

The sampling method for TSP is high volume air samping using glass fiber fil-

ters A previously published study showed that, for such high volume air sampling

of TSP in Cleveland, approximate 95 percent confidence limits on the errors intro-

duced by filters and samplers were about 12 percent high to 11 percent low (ref. 7)

The sampling method for NOn was the Jacobs-Hocheiser method (ref. 8) which

was, at that time, the USEPA-sanctioned method However, this method has since

been discarded because of the recent awareness that the response to N0^ is non-

linear This feature is especially detrimental when the sampling time is sufficiently

long so that a single sample may reflect the cumulative effects of widely varying NOg
concentrations.

Sulfur dioxide was sampled by a West-Gaeke colorimetric technique (ref. 8)

Under the laboratory practices (i.e. wavelength, temperature, and so forth) used

in Cleveland until June 1972, the approximate 95 percent confidence limits on SOg
concentrations were about +20 percent for values above 35 nanograms per cubic

meter. Any value below that was retained as reported, but confidence in the value

is minimal. From August 1972 until June 1975 there was a transition to a more care-

fully controlled test resulting in better quality control. However, during this

changeover period, the reproducibility of the data was erratic.

Obviously, for these three pollutants, we place most credibility in TSP. Hence,

our analyses and discussions concentrate primarily on TSP The SO^ and N0^ data

are included primarily to display their qualitative rather than quantitative features.

REGRESSION ANALYSIS

Models and Method

The statistical modeling discussed in this report leads to the development of

equations which may be used (1) to predict mean pollutant concentrations for given

meteorological conditions, and (2) to compute pollution concentrations adjusted for

meteorological conditions Such models could also contribute to a better under-

standing of how certain meteorologic variables affect daily pollutant concentrations.
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The method chosen for accomplishing this was multiple linear regression analysis

which is explained in such texts as Searle (ref. 9) Draper and Smith (ref. 10) and

Daniel and Wood (ref. 11)

We assume models of the general form

y^o ^Vij ^i ^
where

y. i observed pollutant concentration or some transformed value of that concen-

tration. In this report we use y log(TSP) y =i/NOn, and y =^SO~.
The motivations for choosing these specific transformations are discussed

in the next paragraph.

x._ observed value ofj predictor variable (i.e. meteorologic or economic) for
th

i observation. The particular predictor variables (such as barometric

pressure) used are presented in table I and discussed in detail in the ap-

pendix.

P,, unknown intercept values

p. unknown coefficients (slopes) which are to be estimated. Multiple linear

regression as used here estimates these unknown coefficients by the least

squares method. (Estimated values are denoted by p.)

e. unobserved random error component. This random error is assumed to follow

a normal distribution with a mean of zero and a standard deviation of o

which is unknown. We further assume that the e. are uncorrelated with

each other.

The random error e. will include, among other things, errors of measurement
of the concentrations, inherent variability of concentration because of varying emis-

sion rates and/or atmospheric instability, inadequacies in the model, and to some

extent the errors of measurement of the predictor variables Our data base consists

primarily of 24-hour averaged concentrations at 3-day intervals. A previous study

(ref. 12) found that concentrations observed every 3 days have a very low correla-

tion. Thus the assumption that the e. are uncorrelated is reasonable

It should be noted that with daily pollutant values the errors in successive ob-
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servations might not be uncorrelated and linear regression would not be appropriate

without some modification. A more appropriate method might consist of analysis of

multiple time series.

The choice of transformation of the observed pollutant concentrations is somewhat

tied to the model and the distributional assumptions made about the error component.

In this study, we fit linear models of the form of equation (1) and for each pollutant

at each station visually examined plots of the differences (residuals) defined by

Ei yi h= yi ^o -^^^
Residual plots of the e. using the transformations log(TSP) I/NO", and i/"SOo

1 H V

appeared, upon visual inspection, to generate distributions that approximated nor-

mal distributions with a mean of zero.

Basic Predictor Variables

We are aware that, in most instances, air quality monitoring networks do not

routinely perform meteorological monitoring. Nor do they have the resources for

such monitoring no matter how desirable it might be to have such information.

Therefore, any analytical method which would be generally applicable must not re-

quire any additional monitoring effort. Recognizing this, we have constrained our

use of meteorological variables to those which are readily available from the National

Weather Service (NWS) Specifically, we used only variables listed on the Monthly

Local Climatological Data Summary sheets These are available from NOAA

(Asheville, NC) as both printed sheets and punched cards (decks #345 and #939

form k) These variables include minimum and maximum temperature, average

barometric pressure, total precipitation, and resultant wind velocity for each

24-hour midnight-to-midnight period.

In Cleveland, these data are measured at the Cleveland Hopkins Airport, which

is in the southwest corner of the city (see fig. 1)

Two quite rough indicators of economic activity were incorporated These are

(1) whether the day of observation is a workday or a nonworkday (defined as Sat-

urday, Sunday, and Federal holidays) and (2) a weekly regional steel index

(ref. 13)
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Derived Variables and Estimated Coefficients

Pollutant concentrations at a given time and location are the result of emissions

from various sources which have undergone transport and dispersion processes in

the atmosphere. In general, for a fixed rate of emission from all sources, pollutant

concentrations are inversely proportional to atmospheric mixing. The factors gen-

erally considered to control the degree of mixing are the effective mixing height,

wind velocity, and wind stability (ref. 4) In most locations, however, the NWS

does not routinely monitor mixing heights. Thus, this information has not been in-

corporated even though such measurements were made locally by the NWS for a per-

iod of 1 year.

To construct model equations which can predict pollutant concentrations for

known meteorological conditions, we defined new predictor variables derived from

those basic variables known or suspected to be related to atmospheric mixing. In

constructing derived variables we were guided primarily by Holzworth’s (ref. 14)

qualitative account of large scale weather influences on air pollution concentrations.

Table I presents the 29 derived variables used in the predictive models. These

variables the rationale for their inclusion and the results are discussed in depth

in the appendix. This model was fitted separately at each station and for each pol-

lutant. Tables II to IV summarize the regression results for TSP, ^N0",, and ^SOo.
respectively. It is a logical assumption that the form of the model should be the

same at all stations, although the estimated coefficients might vary somewhat from

station to station for a variety of reasons (e .g. slightly different meteorology due

to local topography or "lake effects" or different placement with respect to the major

sources in the area.)

Tables II to IV present (1) the estimated coefficients for each predictor variable,
9

(2) the value of square of multiple correlation coefficient R (3) the number of
A2

observations available for fitting, (4) the estimate of the error variance d and

error standard deviation 6, and (5) the mean of the observed concentrations y.

The meaning and use of each of these quantities are discussed in the following sec-

tions

Table II presents the regression summaries for log (TSP) There are 17 stations

for each of which there are approximately 450 observations. Stations 20 and 21 have

approximately 100 observations each and are retained for completeness but are not
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included in the detailed analyses of the appendix. Station 11 has fewer than 100 ob-

servations and has also not been included in the analysis Station 13 is the only

ground based sampling station (all other being on rooftops) It has been subjected

to intermittent vandalism and has thus not been included

Tables III and IV present the regression summaries for NO, and SO,, respec-

tively Only 13 of the stations have sufficient data to be included in this study.

Meaning of Coefficients

The model equations we postulate are of the form

y ^o ^i ^
4- 8

The method of least squares provides estimates for the p. which we denote as

p. and which specify the individual change in y which corresponds to a change

in x. Suppose we consider the estimated function for log(TSP) at station 1. Sup-

pose also that we are interested in comparing 2 days which differ only in the fact

that the AT x- of day 2 is 10 higher than the AT of day 1. The predicted values

are then

YI log(TSP^) /3y +^ x^ + +^9 x^

and

y3 log(TSP3) ^ +^ + 10) + +^Q ^Q

Thus,

log(TSPg) log(TSPg) ^(10)

or

TSP, ^ (10)
---"= 10 i

TSP^
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Since p- 0.010, we find that this increase in AT of 10 implies

^ ^O^ OlO)^)
^^TSP

In other words the increase in AT of 10 implies an average increase of TSP con-

centration of 26 percent.

In general, then, for TSP a difference in predictor x. from x,. to x,,. implies
] L] z]

that

Tsp! lo^J x^
TSP^

from which we can estimate the percentage increase or decrease in TSP.

As further examples (at station 1) suppose we wish to determine the effect of

an increase in barometric pressure x,, of 0.3 inch. We find that

TSP (3g(0.3) ,o g-- 10 lo^- 10^"-") i.i2

TSP^

thus implying an average increase of 12 percent. Or suppose we wish to estimate

the change in TSP concentration from September 13, 1967 (the date of first sample)

to December 29 1975 (the date of last sample) This is a period of 1935 days and

hence

;^SP2 ^27(19 35) ^(-0. 0089)(19. 35) p ^TSP^

thus implying a 33 percent drop in concentration on the average.

The aforementioned procedure can be immediately extended to all the variables

and all the stations with respect to TSP. A similar procedure can be used for the

NOn and SOo concentrations except that the use of the square root transformation

for these pollutants makes deriving percentage changes somewhat more tedious
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If a variable has no relation to concentration levels, then the coefficient of that

variable is theoretically equal to zero. In general however, random fluctuations

in the data will produce nonzero estimates even in the absence of a relation. Partial

t-statistics (see Draper and Smith, ref. 10) can be computed for each p. to infer

whether or not its difference from zero is the result of such random fluctuation. In

tables II, III, and IV each estimated coefficient R which has an associated partial

t-statistic with absolute value greater than 1.70 is footnoted to indicate that it is

significantly different from zero. This provides less than a 10 percent chance that

such nonzero values resulted from random fluctuations in the data.

Goodness of Fit and Error Estimate

We have derived regression equations which estimate pollution concentrations

from certain economic and meteorological variables.

The models were all based on linear relations, and we used the method of least

squares to find the single best fitting model. An obvious question is: Just how well

does it fit? One measure of the goodness of fit to the data is given by the quantity
0

R the proportion of the total variance of the transformed concentration that is ac-

counted for by the regression equation. (It is also the square of the correlation

coefficient between the observed y values and the concentrations calculated by the

fitted model.) If R2 1.0, this implies that the fitted model exactly predicts all of

the observed y values. If R 0 .0, this implies that the regression equation has

absolutely no predictive value
9

Table II shows that for TSP the R values range from a low of 0.23 to a high

of 0.47 (excluding stations 20 and 21) with most of the values near 0.40. In other

words, the models account for from 23 percent to 47 percent of the total variance

of the log (TSP) values.
2

Table II shows that for NO, the R values range from a low of 0.17 to a high

of 0.35. Table IV shows that the values for SO, range from 0.19 to 0.34. It is thus
t

seen that log (TSP) values are fit slightly better than are the NO, and SO, values

The model of equation (1) includes an error component which we have assumed
9

follows a normal distribution with unknown variance o This error describes the
9

inability of the model to exactly predict the observations. An estimate of o is

provided by the residual mean square. If y. denotes the predicted values based
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on the best fitting model, then the residual mean square is defined as

n

S ^i yp2
o2^ ^---

n 30

where n is the sample size and 30 is the number of estimated coefficients An esti-

mate for o, the standard deviation of the distribution of e, is then the standard

error of estimate defined by

a V?
Table II shows that, for log(TSP) 6 ranges from 0.140 to 0.233 with most values

being around 0.160. The importance of 6 to the problem of using the models to pre-

dict concentrations will be covered in the following section.

APPLICATIONS

Predictions from Fitted Models

The primary motivation of this work was to develop a method for making predic-

tions Actually, two different predictions are of interest. The first is the prediction

(or estimate) of the mean pollutant concentration as a function of the predictor vari-

ables and the second is the prediction of a single further pollutant concentration

Both predictions result from inserting the specified values of the predictor variables

(i.e. the x. ) into the estimating equation yielding

v^
y ^o + Z^ |3ixi

However, the uncertainties (standard deviations) associated with each application

are very different.

The uncertainty in the prediction of the mean of the y’s for specified x. is a

function only of the actual x and the uncertainty of the estimates (5. The esti-

mated standard deviation of y when the x. are all equal to the means of the x.

is d/^n For the TSP data of station 1 we obtain a standard deviation of 0.170/

11
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382 0.0087. Thus an approximate 95 percent confidence limit on y is

y (1. 96)(0. 0087) = log(TSP) < y + (1. 96)(0. 0087)

In terms of TSP directly this results in proportional limits of

lO^1- 96)^ 008^ (1. 04, 0. 96)

or roughly +4 percent. Thus the regression equation itself is pretty well estimated.

These confidence limits change with the x. (see Draper and Smith (ref. 10) for

details)

The uncertainty in a further predicted value includes not only the uncertainty

in the regression equation but also the uncertainty involved in a single observation.

The standard deviation of a further predicted value at the mean of the predictor vari-

ables is thus

- t^T
At station I for log (TSP) we thus obtain

o- t^l +|[ 0. 1702

Approximate 95 percent confidence limits (in terms of proportional limits) thus be-

comes

^+/-(1. 96) (0.1702) (2 ^ ^6)

That is we can predict single values with a 95 percent confidence of being within

54 percent low to 116 percent high. Thus although the regression function is well

estimated, it is obvious that it is practically useless for prediction of specific single

day concentrations because of the large residual error. We will now consider a situ-

ation where the regression equation can be used to advantage
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Use in Meteorological Adjustment

The previous section showed that the large residual variability precluded mean-
ingful individual predictions of concentrations. Nevertheless, if many concentra-
tions are predicted and then averaged, the average concentration can be estimated

with dramatically improved reliability.

Suppose we use the current predictive models for a period of 1 year, for example;
and that, during this year, we accumulate 100 further observations. Among differ-

ences between this year and previous years are the differences in meteorological
conditions on the days for which data was obtained. If we assume that measured con-

centrations then it is necessary to first remove (adjust for) these meteorological
differences.

In matrix notation, we have fit the model

y ^ + X/3 + e

The estimated standard deviation of a further predicted value is given by (ref. 10)

1/2
^yx CT 1 + 1 + ^o 3E)T (XTX)’’1 (^ s)

where

x the vector of predictor values,

x" the vector of the means of the predictor values, and

T -1(X X) the inverse of the normal equations matrix

If we assume that the pollution generating process is unchanged and the only

changes are in the variables, we observe (meteorologic, etc.) then, on the average,
the model should correctly predict the concentrations. Hence, the quantities

(y. V.)/o’
-i "i" y-x

should follow a t-distribution whose degrees of freedom are equal to the degrees of

freedom available for the estimate o. With such large sample sizes as we have, this

t-distribution is effectively unit normal distribution and hence the mean of the

(y- y-)/o can easily be tested for significant difference from zero.
y
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Degree of Improvement

We have discussed how well the models fit the data and the use of the models for

prediction purposes. Now we consider the question of how much improvement has

been achieved by using the estimated regressions as opposed to using the mean of the

observed concentrations without any adjustment. The quantity D 1 VI R
0

where R is as defined previously (i.e. the square of the multiple correlation

coefficient) expresses the proportional decrease in the standard deviation of a pre-

dicted concentration when the regression equation is used as opposed to simply

using the mean of the observed values (Duncan, ref. 15, pp 696 to 699)
9 I---T

From the R values of table II we find that D 1 Vl R ranges from a low
2 2

of 0. 123 to a high of 0 .272 Most of the R values are near R 0.40 which gives

a value of D 0.225. We thus find a percent improvement of from 12.3 percent to

27.2 percent with most values near 20 percent.

Use in Source Impact Determination

One obvious application of ambient air quality data, such as the TSP data con-

sidered in this study, would be to "triangulate" back from the collected sample to

the emitting source as a function of the wind direction. However, such variables

as the meteorology (other than wind direction) and the relation between wind speed

and ground level concentrations tend to obscure such an analysis This section

presents a possible approach to this problem based on the fact that, with the regres-

sion models just developed, it becomes possible to consider the influence of each

variable separately. A different approach based on comparison of trace element

"signatures" of sources compared with time and wind direction resolved TSP sam-

pling has been described by Fordyce (ref. 16)

Among the major identified sources of TSP in Cleveland are (1) the "Flats" a

roughly ellipsoidal region on either side of the Cuyahoga River and bounded approx-

imately by stations 1, 15, 3, and 13 and (2) two large powerplants situated along the

lakeshore to the north of and slightly to either side of station 10. To illustrate how

the regression models can be used to identify such sources, we examine the results

for TSP at a number of stations

Our method is as follows: (1) At each station we obtain eight estimating functions
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2of the form a(vel)+b(vel) (from p through ?) (2) evaluate these functions

for a number of wind speeds (we limited the evaluation to wind speeds between zero

and the maximum speed observed in that octant to avoid introducing errors of extra-

polation) and then (3) draw contour plots corresponding to equal values of a(vel) +
2

b (vel) using polar coordinates with the sampling site corresponding to the origin

and the radial coordinate as the velocity.

As the model is formulated, when the velocity is zero the wind terms make no

contribution. The estimating functions describe the observed effect of wind velocity

on log(TSP) when the wind is out of each octant (and holding all of the other vari-

ables constant) The contour plots thus show a hand interpolated estimate of

log(TSP) plotted against speed and direction. Positive values indicate increased

concentration while negative values indicate decreased concentration. The contour

plots for nine of the stations are presented in figures 2 to 10. Each plot shows the

direction from the sampling site to the powerplants and the direction to the Flats

The powerplants are indicated by single arrows whereas the Flats direction is indi-

cated by a range of directions since it is in reality a rather indistinct area source.

Also indicated on the plots are the approximate distances of each of these sources

from the sampling station.

Although there are some minor discrepancies, each plot indicates the direction

of the sources as evidenced by "bulges" in the contours Log(TSP) tends to de-

crease rapidly with increasing velocity out of directions lacking strong sources

while it either increases or decreases slowly when there is a strong source upwind

of the sampling station. These results are very encouraging in light of the sim-

plicity of the model. Refinements are possible and the addition of some diffusion

or transport modeling would appear to be the most promising avenues for further

study.

SOURCES OF ERROR

The models we have developed utilize only the roughest of indicators of emission

levels (weekly regional steel index, day of week) Hence the models are averaging
over all possible emission levels which obviously contributes a significant error.
However, this variability is not under control nor reducible by meteorological ad-

justment.
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There are also considerable errors involved in the measurement and definition

of the predictor variables which contribute to inadequacy of the models Some of

these errors of measurement and definition inherent in the use of the NWS climatolog-

ical data are

(1) These data are for the Cleveland Hopkins Airport and have been assumed to

hold for the entire city. This assumption of regional extrapolation of localized

meteorology is recognized as being rather poor, particularly for a city such as

Cleveland which is located on Lake Erie. The proximity of this large body of water

often causes sharp temperature gradients near the shoreline, "lake breeze" fumiga-

tion incidents, and highly localized thundershower and snow squall activity.

(2) Resultant wind is a 24-hour average of direction and speed vectors. Even a

casual examination of the 3-hour summaries found on the reverse side of the NWS

data sheets will show wide fluctuations in both direction and speed are the rule

rather than the exception.

(3) Our precipitation measure is total water equivalent of precipitation. It does

not distinguish between rain or snow and drizzles or cloudbursts.

(4) Temperature is recorded only to the nearest degree.

(5) Pressure is recorded only to the nearest hundredth of an inch. Of more im-

portance is the fact that it is a 24-hour averaged value.

Besides these errors in the meteorological data there are also model errors. For

instance, we included the predictor variables x^ to Xg (temperature and pressure

variables) because we expect that mixing conditions can be approximated from these

variables. The temperatures and pressures are local ground level measurements

To predict mixing conditions, it is better to have temperature and pressure data

available both for neighboring areas and at higher altitudes. Further research on

predicting mixing from easily available ground level data might be of much value

in determining improvements to our models Also, we have included resultant wind

velocity but no measure of directional stability An appropriate measure of direc-

tional stability should help

Another source of error is in the accuracy and precision of the measurement of

the concentrations themselves as discussed previously in this report in the section

POLLUTANT CONCENTRATION DATA.
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CONCLUSIONS

We consider the results obtained to be quite encouraging with respect to the
potential benefits that could come from more refined studies

The overall results are that the mean concentration (1) increases as delta tem-
perature increases and as its first difference decreases; (2) increases as minimum
temperature increases and as the first and second differences increase; (3) in-
creases as pressure increases; (4) generally decreases initially with increasing
velocity except when there is a source upwind; (5) significantly decreased over the
period of the study with a clear indication of seasonal fluctuation.

The goodness of fit of the estimated models to the data is partially reflected by
the squared coefficient of multiple correlation, indicating that, at the various sam-

ling stations, the models accounted for about 23 to 47 percent of the total variance
of observed TSP concentrations However, there is still a large variability unac-
counted for so that predictions of individual values are not very helpful. (A pre-
viously published study showed that, for high volume air sampling of TSP in Cleve-

land the approximate 95 percent confidence limits on the errors introduced by fil-

ters and samplers was about 12 percent high to 11 percent low .)

About a 20 percent improvement when using these equations in place of simple

mean observed values is obtained when (1) predicting mean concentrations for spec-
ified meteorological conditions or (2) comparing successive yearly averages after

being adjusted so as to remove meteorological effects Considerations of the sources

of error in our modeling effort indicate that this could be improved even more

An application of the wind velocity predictor variables and their coefficients to

source impact determination was presented. The results were quite resonable and

indicated a potentially fruitful area for further modeling activity.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, March 12, 1976,

176-90.
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APPENDIX DETAILED EXAMINATION OF THE FITTED MODELS

The results of the fits to log(TSP) at stations 20 and 21 are not included in these

discussions since they have many fewer observations available.

x, AT

We define x- as the maximum temperature minus the minimum temperature for

the 24-hour period from midnight to midnight. When the 24-hour period falls en-

tirely within a warm high pressure cell, the temperature usually drops throughout

the night achieving a minimum around dawn and then rises throughout the day

achieving a maximum around midafternoon. This occurs because of radiative heat

gain and loss due to clear skies. The NWS data cards do not indicate at what time

of day the maximum and minimum occur For all three pollutants, tables II, III, and

IV show the coefficient of A T to be almost always positive and usually significantly

so. Thus, as AT increases, the pollutant concentrations tend to increase also. It

is conjectured that this is because a large AT tends to imply that the day experi-

enced a high pressure system with its attendant poor mixing characteristics.

x^ AT’

Although AT as defined is not a continuous function of time, we define x^ as

AT’ 3AT_ -^AT^ + AT^g

where AT. is the AT of day i. If AT were a continuous function, this wouldbe

the backward noncentral first difference (up to a constant factor) and hence estimate

the first derivative of AT (ref. 17) We feel that this variable should in some sense

indicate the persistence of high and low pressure cells.

Table II shows that, for log(TSP) all of the estimated coefficients of AT are

negative, of which three are significantly less than zero.

Tables III and IV show there are more negative than positive coefficients of x

but that none are significantly different than zero.

Evidently, AT’ is marginally useful for predicting TSP concentrations but of

no apparent value in predicting SOn or NO, concentrations
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x MIN

This variable is defined as the minimum temperature for the day.
Table II shows that the estimated coefficients of x, for TSP are all positive with

ij

14 of them significantly greater than zero. Tables III and IV show that this pattern
does not carry over to SOg and NOg We do not have any clear explanation as to why
these results are obtained. Since daily minimum temperature in Cleveland has
strong seasonal characteristics, it is possible that some other variable correlated
to MIN has an effect on TSP concentration but not on SO., and N0 concentrations.

i
It is also probable that inversions and poor mixing occur more frequently in the sum-
mer months than during the winter months

x MIN’

As with AT, MIN is not a continuous function of time We however, included
a derivative-like variable defined as

MIN’ 3MIN. 4MIN. + MIN. r>1 1~ J- 1~^

where MIN^ is the minimum temperature on day i Variations in minimum temper-
ature should be related to the passage of high and low cells MIN’ should indicate

this better than MIN directly because it does not involve the seasonal fluctuation
of MIN.

Table II shows that all of the estimated coefficients of x. for TSP are positive,
of which 10 are significantly greater than zero. Tables III and IV show that for SO,
and NOg, all the estimated coefficients are positive and there are five significantly
greater than zero for each pollutant.

Evidently, MIN’ is a useful predictor for pollutant concentrations

x MIN"

This variable is essentially an extension of x, since it is defined as

MIN" -2MIN, + 5MIN. 4MIN. + MIN.
1 1*-L 1^ 1-3
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This would approximate the second derivative of MIN if MIN were a continuous

function of time

Table II shows that all of the estimated coefficients of Xg for TSP are positive,

of which five are significantly greater than zero.

Table III shows that 12 of the 13 estimated coefficients for Xg for N0^ are positive

of which six are significantly greater than zero.

Table IV shows that for SO,, only 9 of the 13 estimated coefficients are positive
Z

and only one is significantly different than zero.

Evidently, MIN" is related to both TSP and NO, concentrations but not partic-

ularly to SOn concentrations

x- Barometric Pressure
b

This is the daily average barometric pressure in inches of mercury High pres-

sure cells tend to create poor mixing conditions while low pressure cells tend to

create good mixing conditions

Table II shows that 16 of the 17 estimated coefficients of x for log (TSP) are sig-

nificantly greater than zero. There is one anomaly at station 9 where there is a

negative slope. We have no explanation for this

Table III shows that 12 of the 13 estimated coefficients of Xg for N0^ have positive

coefficients with four of these being significantly larger than zero.

Table IV shows that 12 of the 13 estimated coefficients of Xg for SOg are positive

with five of these being significantly greater than zero.

Originally, first and second derivative-like variables for barometric pressure

were included in the models, analogous to the defined differences of AT and MIN.

It was anticipated that these variables would be important, but, on the basis of many

tentative models that were analyzed, it seemed they were not.

x- and x-
7 o

There have been several studies of the effect of precipitation (usually as rainfall)

upon airborne pollutant concentrations Hogstrom (ref. 18) has reported the tend-

ency for some gasses to "wash out" while Dana, Hales, and Wolf (ref. 3) have more

recently reported that "wash out" appears to have little effect on SOn. This is pre-
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sumed to be due to chemical interactions which can involve a fairly rapid re-release
of the SO, from the raindrops.

In this study we use total precipitation as water equivalent in inches. There may
be considerable error involved in using the water equivalent of snow as if it were
rain. However, there is no simple or direct way of determining from the NWS data
sheets how much of the days precipitation is rain and how much is snow The two
variables x- and x are defined as

i

Xn total water equivalent

Xg X^
These were chosen because it was anticipated that the incremental scrubbing of pol-
lutants by the precipitation would tend to be diminishing as the total precipitation
increased. Thus, one would expect the coefficient of x- to be negative while the

coefficent of Xg would be a somewhat smaller and positive quantity.
Table II shows that for log(TSP) this behavior is evident for 16 of the 17 equa-

tions All of these have at least one of the coefficients significantly different than

zero except station 8. There is one distinct anomaly at station 10 where neither coef-
ficient is significant and the pattern does not hold.

Table III shows that for NO,, 11 of the stations exhibit the expected pattern and

5 of these 11 have at least one of the coefficients significantly different than zero.

Table IV shows that for SOn there is no apparent pattern.

We thus find that washout clearly occurs as expected with TSP, seems to occur

somewhat with NO, but to a lesser degree than with TSP, and seems not to occur

at all for S0 This last result is consistent with the results of Dana, Hales, and

Wolf (ref. 3)

x- Workday

r In order to roughly account for calendar oriented changes in human activity,

we define

0 for Saturday, Sunday, Federal holidays

"" I 1 otherwise
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One clearly expects concentrations to be higher for Xg 1.

Table II shows that all of the coefficients of Xg for log(TSP) are positive with

13 of these being significantly greater than zero.

Table III shows that 11 of the 13 coefficients of Xg for N0^ are positive and of

these one is significantly greater than zero.

Table IV shows that 11 of the 13 coefficients of Xg for SOg are positive and of

these one is significantly greater than zero.
r

x... Steel Index

The steel mills in the downtown industrial section of Cleveland are among the

dominant sources of TSP and SO,. As a rough measure of their activity, we incor-

porated as variable x-,, a weekly regional steel output index from the American

Iron and Steel Institute (ref. 13) The results from this are puzzling. We find that

all except two of the coefficients of x,. for TSP are found to negative and 7 of these

are significantly lower than zero. The two stations with positive coefficients are the

two stations closest to the steel mills (stations 1 and 9) During the period of our

study, it is known that some of the steel mills have installed controls. This may

account for part of the apparent decrease in TSP concentrations with increasing

output.

x^ to x^

Wind direction, speed, and stability are known to be key factors in the transport

and dispersion of pollutants. The derived variables x^ to Xgg were introduced

primarily as indicators of large scale or macrostability. Local ground level wind

direction and velocity might be considered aspects of local transport.

The NWS punched card data summaries provide a 24-hour average vector result-

ant wind with velocity reported to the nearest tenth mile per hour and direction to

the nearest 10 (wind from North 0) (The reverse side of the data sheets contain .,
the direction and speed at 3-hour intervals, but this information is not on the punch-

ed cards.) Besides this the sheets provide a 24-hour scalar averaged speed (av-

erage amplitude) irrespective of direction.

Our method of including the resultant wind is as follows. The NWS wind direc-

tion data is rounded to the nearest 10 where 0 North and 90 East. We divided
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the compass into eight segments as in the following table:

Octant Compass Degrees (from North)
point

1 N 340, 350, 360, 0, 10, 20
2 NE 30, 40, 50, 60

3 E 70, 80, 90, 100, 110
4 SE 120, 130, 140, 150
5 S 160, 170, 180, 190, 200
6 SW 210, 220, 230, 240
7 W 250, 260, 270, 280, 290

8 NW 300, 310, 320, 330

and associated a pair of predictor variables with each segment; namely, x-, ,x-, for
-L J. -L

segment one to Xgg.x^g for segment 8. For each day we then (1) determine the seg-
ment from which the resultant wind was blowing, (2) set the first x associated with
that segment equal to the resultant velocity, (3) set the second x equal to velocity
squared, and (4) set the x’s associated with all the other segments equal to zero.
For example, if the resultant wind on a particular day is 40 from the north at v
miles per hour, we then set

^S ^
2

Xi4 v

and all the other x’s from x- to x, equal to zero.
J. J- ^b

For each pair of x’s corresponding to a particular wind direction, the most

likely a priori values for the coefficients of v and v2 would be a negative coeffi-

cient of v and a smaller but positive coefficient of v This corresponds to better

mixing with increasing velocity combined with a "diminishing returns" type of ef-

fect Such a function approximates the more usual form of 1/v which appears in

diffusion models (ref. 4)

When there is a pollutant source upwind of a sampler, however, the relation of

concentration to wind speed will not generally follow the aforementioned form. De-
pendent upon the relative sampler and source elevations, wind speed, and turbu-

lence, fumigation (i.e. forcing of the plume to the ground) may occur. If the

breeze is light, plumes can "loop" over the sampler. Increasing velocity may then
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bring about fumigation and thus an increase in concentration. Yet higher velocities

would then increase mixing and bring about lower concentrations again. Such be-

havior is evidenced by the plots of figures 2 to 10 discussed in the section Use in

Source Impact Determination.

x^ to x^

In any study, such as this which extends over a period of several years there

is the possibility that there are some systematic trends in time. For example, in

Cleveland, the steel mills tend to be busiest in the summer months and slowest in the

late winter months. Fluctuations in the general economy would tend to have some

effect on emissions due to slowing down or speeding up of emitting industries.

There are also possible effects due to changes in power consumption during the year

year. And, of course, there ought to be a downward trend in localities where con-

trols have been instituted. (Box and Tiao (ref. 19) present a time series model by

which the effects of such "interventions" may be evaluated.)

In this study we included only two potential trend patterns. The first is a linear

drift in time (as measured in hundreds of days from Jan. 1, 1967) The second is a

possible periodic trend with a period of 1 year and phase angle unspecified. These

were introduced by including the variables

day number
^27"’ 100

x^g sin 9

x, cos e

Q day number

365.25

Table II shows that for log(TSP) there is evidence of both a linear drop in con-

centration and a periodic component. All of the estimated coefficients of x,y are

negative of which nine are significantly less than zero. At all the stations except

one at least one of the coefficients of x^g and Xng is significantly greater than zero.
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The variables Xgg and Xgg can be treated simultaneously by the mathematical

identity

(3go sin 0 +(3o9 cos 0 r cos(0 (p)

where

^ V^s ^ls

^ tan-1 ^//^

the quantity r denotes the magnitude of the periodic effect and <p is the phase a

angle. The following table provides the values of r and <p derived from the TSP

results:

Station Magnitude, Phase angle, Station Magnitude, Phase angle,
r <j0, deg r cp, deg

1 0.10 73 10 0.11 62

2 .086 60 12 .14 46

3 .15 51 14 .14 61

4 .14 51 15 .16 42

5 .11 63 16 .15 49

6 .14 51 17 .12 76

7 .15 54 18 .12 57

8 .16 53 19 .21 45

9 .049 80

These results show that the maximum mean concentration during the year occurs

roughly between mid-February and mid-March while the minimum is roughly be-

tween mid-August and mid-September. The magnitudes of the cyclic trends are all

between 0.049 and 0.21 and are generally near 0.13.

Table III shows that, for NO,, 10 of the 13 estimated coefficients of Xoy are neg-
ative and 7 of the 10 are significantly less than zero. This shows a drop throughout
the city in general. But it may be noted that all of the coefficients that are signifi-
cantly less than zero correspond to stations on the East side of the city. The Indus
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trial sector is in the central part of the city distributed about the Cuyahoga River

and the prevailing winds are from the west and Southwest. Thus a decrease in N0^
emission by industry would account for such a pattern. Ten of the stations have at

least one of the coefficients of x,g and Xng significantly different than zero, thus

indicating a significant periodic component to NO, concentrations.

Table IV shows for SOy that 12 of the 13 estimated coefficients of x,n are neg-

ative and that 8 of the 12 are significantly less than zero. There has evidently been

a general drop in SOn over the period of the study. There are six of the stations

with at least one of the coefficients of x^g and x^g being significantly different

than zero. There is thus some evidence of a periodic component to SOg data but it

is not as strong as for TSP and NOn.

Other Variables

Many other variables and combinations of variables were considered besides the

ones listed here. Regression analyses were performed for many models including

these other variables also. On the basis of these analyses we retained only the 29

variables listed either because of their expected importance or on the basis of high

statistical significance.
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TABLE I. DERIVED PREDICTOR VARIABLES USED IN THE REGRESSION MODELS

Vari- Symbol Definition

able

x, AT ^MAX ^MTN^ ma3amum temperature minus minimum temperature (F)

Xg AT’ 3 AT^ 4 AT^ + AT^_g; related to noncentral first difference of AT at day

x, MIN ^MTN! minimum temperature (F)

x^ MIN’ 3 MIN. 4MIN, + MIN. n; related to noncentral first difference of MEN at day

Xg MIN" -2MIN. + 5MIN__.. 4MIN, 3 + MIN. g; related to noncentral second difference of

MIN at day

Xg B. P. Daily average barometric pressure in inches of mercury

Xn P Total water equivalent of precipitation in inches

Xg (Pr) Square of Xn

XQ WORK Indicator of workdays versus nonworkdays

f0 Saturday, Sunday, Federal holidays
WORK <

\\ Otherwise

x,n STEEL Weekly regional steel tonnage index

x... v fresultant velocity; when wind is out of North octant (see appendix for complete description)

" 1.0.0; otherwise

^ ^ A\
x,g v Similar to x--, x-n when wind is from NE

^4

x^g Vg Similar to x,-, x-n when wind is from E

^6 ^
X17 vse Similar to x, x-n when wind is from SE

"IS ^e
x^g v Similar to x..., x., when wind is from S

^O v!
"ai ^sw Similar to x,.., X,,, when wind is from SW

^ vlw
"a"? vw Similar to x x-,, when wind is from W

^4 ^w
Xg5 Vnw Similar to x--, x,, when wind is from NW

X26 ^w

x,^ t Number of days from January 1, 1967 divided by 100 (Jan. 1, 1967 is nominal beginning of

sampling program)

x^g sine sin(27rt/3.6525)

Xnn cos0 cos(27rt/3.6525)
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TABLE n. REGRESSION

Vari- Symbol Sampling

able
1 2 3 4 5 6 7 8 9

0 A) -2.65 -1.23 -5.09 -2.91 -1.60 -2.21 -4.39 -4.84 3.42

1 AT b .010
b .0066 b .010

t)
.0080

b .0058
b

.0094
b .0096

b .0081 b .0043

2 AT’-.00055 -.00041 b -.0010 -.00034 -.00045 b -.00091 -.00055
b

-.00077 -.00022

3 MIN b .0037 .0018 b .0046 b .0033 b .0029
b .0034

b
.0044

b .0051 .0012

4 MIN’.00043
b .0021

b .00098 b .0022 b .0012 .00079 .00091 .0011 .00075

5 MIN".00044
b

.0015 .00023
b

.0013 .00043 .00014 .00049 .00044 .00074

6 B.P.
b

.16
b

.11
b .24 b .17

b
.13

b
.14

b
.22

b
.23 -.042

7 P b-.14 b-.23 h-.17 b-.30 h-.18 b-.15 h-.lO -.11 b-.21
8 (P^2.049 b .10

b .10 b .16
b .095 .050

b
.068 .067

b
.080

9 WORK b .076
b .068

b .049 .016
b .068

b
.051

b .047 .014
b .050

10 STEEL .00031 -.00028 -.00039 -.00040 -.00038
b

-.0012
b -.00094

b
-.0010 .00055

11 Vn
b

-.029 .00056 .016 b -.040 -.012 -.027
b -.037 .0037 h-.030

12 V2.00098 -.0013 -.0010 .0019 .00005 .00074 .0016 -.0012 .0015

13 v^g -.021 -.0011
b

.021 b
-.045

b -.018
b

.024 .0017 .026 b .028

14 v^e -.00051
b -.0027 -.00030 b .0021 -.00032 .00053 -.00030 -.00075 .00030

15 Ve
b -.035 -.030 .00077 b -.070

b -.057 -.028 -.011 -.00030 -.015

16 v| .0014 .00085 -.00033 b
.0044

b .0031 0.0 .00009( -.0013 .00009

17 Vge -.017 -.017 -.011 -.027 b -.024 -.024 -.0081 -.016 -.017

18 vje .00017 -.00019 0.0 .00065 .00042 .00052 -.00030 .00018 -.00040

19 Vg -.0090 -.0040 -.0088 b -.020
b -.019 -.013

b -.018 b -.018 -.0036

20 vj -.00021 -.00051 -.00025 .00042 .00007 -.00010 .00004 -.00020 -.00017

21 ^w
b --027 -.0028

b
-.022 -.011

b -.019
b -.015

b -.024
b

-.019 .0078

22 vjw .00090 -.00050
b .00070 .00008 .00031 .00042 .00065 .00014 -.00028

23 Vy,
b

-.030
b -.023

b
-.018 -.024

b -.017
b

-.030
b -.034

b
-.025 -.0067

24 v^ b .0012
b .0013 .00049 .00099 .00067

b .0010 b .0013 .00082 .00067

25 v^
b -.048 -.011 -.014 b -.044

b -.022 b -.045
b

-.051 -.013 h-.032
26 v2^ b

.0028 .00050 .00024 b .0027 .0011
b .0023 b .0028 .00029

b .0019

27
b -.0089

b -.0046
b -.0053 b -.0081

b -.0086 -.0011 -.0047 -.0029 b-.0038
28 Sine

b .099 b 075
b 12 b

11
b .096

b 11 .12 b 13 h.049
29 cos6 .031 .043

b 098 b
.090

b
.049

b
.089 .087 b .099 .0087

N 382 388 495 364 474 448 425 387 482

Y 2.29 1.99 2.06 2.09 2.09 1.99 1.95 1.93 2.32

R2.47 .39 .47 .38 .44 .36 .42 .40 .34

&2.0288 .0252 .0250 .0310 .0196 .0256 .0270 .0319 .0260

9 .170 .159 .158 .176 .140 .160 .164 .179 .161

D .27 .22 .27 .21 .25 .20 ^24_ 23_ 19

^hese stations are not included in detailed discussions.

Denotes significant coefficients.
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SUMMARIES FOR log(TSP)

station

12 13 14 15 16 17 18 19 ^0 ^1

-1.53 -2.75 -3.33 -5.10 -5.69 -1.10 -3.50 -4.07 -6.75 1.07
b .0083

t)
.0085 b .0075 b .014 b .0091 b .0069 b .0057

b
.010 b .013 b

.015
-.00044 -.00047 -.00046 -.00051 -.00016 -.00022 -.00025 -.00051 b -.0020 -.0017
.0021 b .0042 b .0048 b

.0060
b

.0043 b .0029 b .0036 b
.0064 b .0077 .0030

.00053 b .0011 b
.0021 .00099 b .0021 b .0013

b
.0016

b
.0016 -.00014 .00098

.00023 b .00074 b .0012 .00047 .00043 .00064
b

.00089 .00056 .00021 .0019
b

.12 b .16 b .18 b
.24 b .26 b

.11
b

.19 b .20 b .29 .024
.027 b-.22 h-.23 b-.31 h-.19 b-.23 b-.30 h-.ll -.17 .098

-.027 b .088 b .11 b
.13 b

.090 b .090
b .14 b

.067 .061 -.019
b

.048 .027 b
.034

b
.049 b

.048 b .046
b

.043 .024 .036 b
.11

-.00030 b-.00090 b-.00076 -.00009 b-. 00070 h-.OOll -.00045 -.00025 -.0011 .0014
b -.040 -.015 .0050 -.0042 -.017

b -.021 -.0077 -.0064 -.050 .040
b .0025 -.00032 -.0024 -.0012 .00029 .00093 -.00063 -.00027 .0042 -.0051

-.016 .020 b
-.028 -.0012

b
.037 -.018 -.016 .0029 -.011 .055

.00065 b-.0023 .00078 .00053 h-.0039 .00032 -.00022 .00030 -.00078 b-.0045
-.032 -.0056 -.011 .018 .00046 -.029 -.034 -.020 -.013 .083
.0013 -.00001 -.0022 -.0014 -.00070 -.00033 .0012 .00003 .0013 -.0089

-.0056 .0072 -.013 .013 -.0048 -.011 -.011
b

-.026 -.018
b

.17
-.0010. -.00094 -.00015 -.00035 .00003 -.00042 -.00059 .00053 .0012 h-.022
-.0037 -.0096 b

-.019 -.0030 -.013 -.0064 -.022
b

-.023 -.0067
b

.069

-.00007 -.00017 .00022 -.0011 -.00021 -.00031 .00073 .00009 .00009 h-.0043
-.0058 b-.016 -.0084 h-^l 1:>-.024 .0013 -.0099 b-.028 -.024 .041
.00011 .00040 -.00055 .00059 .00062 -.00058 0.0 .00045 .00077 -.0027

-.0024 b
-.025 b -.018 b

-.041
b

-.029 b
-.013 -.013

b
-.025 b -.062 -.027

.00049 .00086 .00067 .0014 .00094 .00056 .00058 .00032 .0048 .0014
b

-.030 b -.055 -.015 -.018
b

-.030
b

-.029
b

-.029 -.019 b
-.11 -.030

.0020
b

.0027 .00049 .00020 .0013 .0014
b .0017 .00036

b
.0071 .00019

b
-.0043 -.0018

b
-.0035 b -.0059 -.0017 -.0020 -.0015 -.0011 -.0047 -.021

b
.093

b
.10

b
.12 b

.11
b

.11
b

.12 b .098 b
.15

b
.17 .029

.050 b
.095 b

.066 b
.12 b

.095 .029 b .063 b
.15 .096 .013

483 468 443 419 438 459 445 422 112 116
2.19 1.91 1.90 2.13 1.93 2.12 1.99 1.92 1.89 2.16
.23 .41 .41 .42 ,45 .42 .30 .45 .64 .62
.0358 .0251 .0247 .0543 .0281 .0211 .0273 .0277 .0264 .0407
.189 .159 .157 .233 .168 .145 .165 .166 .163 .202
.12 .23 .23 .24 .26___ __24. .16 .26 .40 .38
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TABLE m. REGRESSION

[Vari- Symbol Sampling

able
1 2 3 4 5 6

0 PQ -43.86 7.32 -.21 -26.25 24.86 -28.48

1 AT a .085 .057 .030 a .064 a .050 a .099

2 AT’.0018 -.0023 -.0044 .0049 .0020 -.0046
3 MIN .0077 .0093 -.0055 .0087 -.0065 .015
4 MIN’ a

.035
a

-.030 .0062
a

.029 .0040
a

.023
5 MIN" a .013 a -.029 .0041 a .022 -.0058

a
.014

6 B.P. a 2.02 .32 .57 a
1.54 -.30 a

1.46
7 Pr .26 -1.28 -1.06 -1.89 B-2.3 a-1. 56

8 (Pr)2-.015 .59 .74 .91
a

1.0 .77
9 WORK -.015 .42 .29 .29 .32 a .63

10 STEEL -.0042
a

-.023 -.0058 a -.025 .0020 -.0039’
11 v^ .071 .089 -.069 -.025 -.11 -.18
12 v2 -.016 -.054 -.0024 -.0090 .0043 .015
13 v^e -.017 B-.55 -.067 -.18 -.31 a 50

14 vgg -.0058 .027 -.00079 -.0056 .0095 a .024
15 ve -.29 -.31 -.42 a

-.49 -.45 -.33
16 v2.012 .0068 .012 a

.037 .0059 -.0081
17 Vge -.17 -.18 -.019 -.38 -.20 -.095
18 v2.0046 -.011 -.021 .019 .00076 -.0081
19 Vg -.20 -.19 -.23 .062 -.22 -.13
20 vg .0017 .0031 .00060 -.014 .00033 -.0038
21 Vg^y

a -.23 18 a -.32 .095 a
-.33 a

-.23
22 v|^ .0043 -.0051 .0050

a
-.016 .0075 .0060

23 v^y -.14
a

-.43 -.24 -.16 a -.28 a -.21
24 v2, -.0020 .014 .0028 .0089 .0056 .0079
25 v^w -.33 -.39 B-. 42 -.26 B-.56 14
26 v2^ .012 .0076 .021 .012 .028 -.0058
27 t a

-.055 .019 .019 a
-.12 a -.077 a -.050

28 sin0
a .56 .67

a
.93 a 1.29 -.053 a 70

29 cos0 -.041 .58 13 .27 -.11 .78

N 396 177 453 333 436 390
Y 14.3 13.1 14.6 13.9 14.2 14.1
H2.28 .35 .17 .32 .20 .27
B2 5.20 4.82 7.97 6.00 5.96 4.41
0 2.28 2.19 2.82 2.45 2.44 2. 10
D .15 .19 .09___ .18 .11 15

^Denotes significant coefficients.
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SUMMARIES FOR t/NOg"

station

7 8 9 10 12 14 15

-24.58 1.10 7.17 -12.78 6.71 1.81 7.64
a

.056
a

.083 a
.073 a .11 .039 .036 .063

-.010 -.0081 .0015 -.0052 -.0052 -.0038 -.013
-.0068 .011 .010 .0055 -.021 -.00058 .048
.0010 .0092 a .020 .013 .011 .014 .017
.0081 .011

a
.012 .0073 .011 a

.012 .020
a

1.45 .44 .31 1.06 .35 .50 .32
-1.55 -1.39 B-2.17 -1. 44 B-2. 12 B-2.72 -1.36

.10 .79 a .96 .78 .79 a
1. 48 -.97

.13 .12 .24 44 .016 .014 -.24
-.011 -.00016 -.0017 -.0092 a

-.Oil a
-.014 -.012

a -.40 -.0015 -.28 a
52 B-.39 .097 -.049

.019 -.015 .0098 a .035 .0086 -.024 -.036

-.085 -.086 14 a -.39 -.020 B-.32 17
-.0071 .0045 -.0030 .018 -.014 .014 .0078
-.11 -.23 a

-.41 a -.45 -.097 -.39 -.37
-.0085 .0047 .011 .021 .00071 .018 .026
-.15 -.18 -.25 -.31 .065 -.23 .21
-.0036 -.0019 .0036 .011 -.012 .0016 -.025
-.098 -.071 .028 -.096 .017 a -.24 -.077
-.0063 -.011 a

-.015 -.0068 -.012 .0084 -.0043
a

-.28
a

-.20 a
-.18

a
-.27 -.16 -.15 -2.3

.0048 -.0051 .0019 .0095 -.0028 -.0019 .0012
k -.16 -.11 a

-.19 a
-.27 a -.24 -.13 a

-.62
-.0032 -.0028 .0058 .0028 .00054 -.0022 .017

a -.58 -.31 a -.39 a
-.39 a -.55 -.22 -.18

.025 .010 .016 .0095 .020 .0041 -.0034
-.045 -.015

a
-.10 a

-.15 .00043 a
-.046 -.11

.74
a

.71 a
.70

a
.84 .35 a

51 a
1.25

a .32 a
1.09 .036 .19 .025 a

.72 .94

425 413 430 340 426 384 212
14.2 13.9 15. 1 15.2 13.4 12.6 14.2

.21 .23 .29 .31 .25 .20 .29
6.51 5.89 4.67 4.99 5.26 4.10 8.35
2.55 2.43 2. 16 2.23 2.29 2.03 2.89

_11_ .12 .16 17 13___ 11 .16
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TABLE IV. REGRESSION

Van- Symbol"_ Sampling

able1 2 3 "4 5 6

0 3n -101. 4 40.71 -52.52 -14.40 3.47 -29.29

1 AT
a .15 .0030 .045 -.0057 .011 .038

2 AT’.0013 .015 -.0017 .0096 .0047 -.0026

3 MIN .017 -.029 -.011 -.012 -.019 -.017

4 MIN’ a .048 .011
a .029

a .028 .0038
a .031

5 MIN".018 -.0086 .0077 .0094 -.011 .012

6 B.P. a 3.70 -1.09
a

2.09 .97 .31 1.4

7 Pr -.051
B

2.87 .077 -2.18 .083 -.49

8 (Pr)2.24 B-1.86 18
a

1.95 .053 -.22

9 WORK .33 -.042 .31 43 .26 .25

10 STEEL .021 .00079 .0089 -.0063
a .013 -.0012

H v
a .52 -.0083 "- .66 .00043 -.049

a
-.52

12 v2 -.038 -.030
a -.049 -.0061 -.014 .040

13 Vne .26 .14
a .60 -.41 B-.61 -.29

14 vge -.019
a

-.036 -.027 .014
a .032 .0080

15 Ve .086 B-1.2 -.30
a -.73 B-1.0 a -.66

16 vj -.018 .046 .00089 .034
a

.054 .026

17 Vge .11 ^l-S 45
a

-.64 -.37 -.15

18 v2 -.0067
a .092 -.0015 .043 .0061 -.0056

19 ^ -.24 B-. 48 -.21
a -.32

a 39 -.061

20 v2.0086 .0078 .0026 .0057 .0096 -.0059

21 Vsw
a -.33 B-.63 a -.31 -.012 B-.37 .032

22 vjw -0081 a Q22 .0048 -.013 .010 -.0095

23 Vw 14 a-. 74 -.25 -.24
a 26

a
-.36

24 v2 -.0056
a

.028 .00092 .0033 .0013
a .015

25 v,^ .12 -.42 .28 -.32 41
a

-.40

26 v2^, -.019 .0078 -.028 .017 .021 .020

27 t a -.20 .12
a 10

a 10
a

-.24 14

28 sine -.18 -.68 -.37 -.15 B-.72 .099

29 cos0
a 1.15 .018 1.01 .63 .091 .71

N 395 182 431 326 432 392

Y 9.78 7.31 8.06 9.49 8.75 8. 11

R2.31 .34 .32 .24 .27 .23

Q2 11.21 6.35 8.94 6.97 7.72 6. 49

a 3.35 2.52 2.99 2.64 2. 78 2. 55

D .17 19 .18 13 15 12

BDenotes significant coefficients.
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SUMMARIES FOR*/SO,

station

7 8 9 10 12 14 15

-43.24 -34.82 -4.95 -8.24 -40.06 -33.62 -67.65

.032 .044 a .057 .052 .025 -.0099 a .084

-.0019 -.0055 .0077 .0055 -.0017 .0049 -.013

-.0040 -.0065 .016 .0049 -.025 .015 .021

.0056 .0032 .0077 .00061 .015
a

.031 .030

-.0074 .0023 -.0032 .0049 .0067 .0051 a -.035
a 1.8 1.43 .48 .75

a
1.67

a
1.49 2.54

1.2 -.86 B-2.22 1.9 -.61 -.15 .86

-.49 .49 .95 -.97 .47 .65 70

.43 .25 a .79 17 .37 .12 -.018

.0040 .0061 .0023 -.0025 .0018 -.0062 .013

.22 .31 a 50 -.080 -.13 -.17 -.14

-.029 -.023 a -.034 -.0072 .0045 -.0015 -.0075

.32
a .59 .031 -.30 .12

a
-.42 -.028

-.0094 -.026 -.0077 .031 .00028 .020 -.012

.25 .40 -.20 -.13 .18
a

-.70n .54

-.016 -.034 .010 -.0094 -.024 .033 -.055

.17 .031 -.10 -.18 .30
a -.42 .45

-.0090 -.0027 -.00026 .0019 -.021 .013 -.031

-.038 -.11 .064 .12 18
a

-.36 -.19

-.0042 -.0018 -.0096 -.015 .0013 .012 .0025

-.19 -.16 14 -.069
a

-.30
a

-.26,
a

-.45

.0044 -.00024 -.0046 .0033 .0086 .0028 .0097

17 -.18 .26 15 a -.29
a

-.27
a -.59

-.00008 -.0018 -.013 -.016 .0055 .0058 .011

14 .018 -.23 -.29 -.26 -.30 -.74

-.00060 -.011 .021 .012 .0095 .011 .035
a -.096 a -.059 a-.20 a-.30 -.024 -.046 -.079
a -.66 -.23 -.17 .50 -.23 .035 .013
a 1.2 a .90 .46 .98 .57 a 1.39 a

1.44

412 397 420 338 416 362 201

7.28 8.06 9.29 9.40 6.95 6.97 7. 53

.21 .23 .21 .19 .27 .20 .31

6.44 6.35 8.46 9.75 5.49 5.78 10.28

2.54 2.52 2.91 3.12 2.34 2.40 3.21

15 .12 .11 .10 .15 .11 .17
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Air Pollution Control Office, 2785 Broadway
2 Audubon Junior High School, 3055 East Boulevard
3 Brooklyn Y. M. C. A., West 25 St and Denison
4 Cleveland Health Museum, 8911 Euclid / \2(J)
5 Cleveland Pneumatic Tool, 3701 East 71 (near Broadway) /
6 Collinwood High School, East 152 and St. Clair / \
7 Cudell Recreation Center, West Boulevard and Detroit ^^ )
8 Estabrook Recreation Center, Fulton and Memphis / /
9 Fire Station 13, 4749 Broadway / / Euclid
10 Fi re Station 19, East 55 and St Clair Lake Erie / <
11 SL Vincent Charity Hospital, E. 22 St. / \
12 G. Washington Elementary School, 16210 Lorain / w \
13 Harvard Yards, 4150 East 49 St. / I---------"
14 J. F. Kennedy High School, 17100 Harvard /
15 P, L Dunbar Elementary School, 2200West 28 St. / \
16 Almira Elementary School, West 98 St. and Almira /- East Cleveland

17 Fire Station 29, East 105 St. and Superior / QO)
18 John Adams High School, 3817 East 116 St. / (ff\ /
19 J. F. Rhodes High School, 5100 Biddulph X /
20 St. Joseph High School, 18491 Lake Shore Blvd. >- @ (!) Cleveland Heights
21 Supplementary Education Center, 1365 E. 12 St. /\

Lakewood <<7\ *^\ \w (C) \o \
Rocky River \ (?) 7 \

/ \ Shaker Heights

./’ / \\ \ (?) Warrensville/(C) / ^
(R) 1[ (13) \ I8

^ Heights
Fairview Park / (D \w \ @

Hopkins / Brooklyn \ 1---I \ /
International / /9 Garfield Heights \ North Randall
Airport ^

/ /V-Cuyahoga River \
Lewis <r- / Rronknark pama Brooklyn Heights Maple Heights
Research \ / ’^P^ Parma Heights
Center /I-----’ 0 2 3

Miles

Figure 1. Air pollution monitoring sites for Cleveland, Ohio. Municipal boundaries have been straightened somewhat but are ac-
curate in their essential features.
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Figure 2. Constant contours of log (TSP) against resultant wind velocity at Figure 3. Constant contours of log (TSP) against resultant wind velocity at
station 2. (Angle denotes wind direction; radial scale is mph/division.) station 3. (Angle denotes wind direction; radial scale is mph (division.)
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Figure 4. Constant contours of log (TSP) against resultant wind velocity at Figure 5. Constant contours of log (TSP) against resultant wind velocity at
station 4. (Angle denotes wind direction; radial scale is mph (division.) station 5. (Angle denotes wind direction; radial scale is mphfdivision.)



Figure 6. Constant contours of log (TSP) against resultant wind velocity at Figure?. Constant contours of log (TSP) against resultant wind velocity at
station6. (Angle denotes wind direction; radial scale is mph (division.) station?. (Angle denotes wind direction; radial scale is mph (division.)

CO
CO



0̂

Figure 8. Constant contours of log (TSP) against resultant wind velocity at Figure 9. Constant contours of log (TSP) against resultant wind velocity at
station 10. (Angle denotes wind direction; radial scale is mphfdivision.) station 12. (Angle denotes wind direction; radial scale is mphfdivision.
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Figure 10. Constant contours of log (TSP) against resultant wind velocity at
station 17. (Angle denotes wind direction; radial scale is mph (division.)
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